A Novel Particle Swarm Optimization Approach for Optimal Reactive Power Dispatch

نویسندگان

  • Bo Zhao
  • Quanyuan Jiang
  • Chuangxin Guo
  • Yijia Cao
چکیده

TIn this paper, a solution to reactive power dispatch problem with a novel particle swarm ToptimizationT approach based on multi-agent systems (MAPSO) is presented. The method integrates multi-agent system (MAS) and particle swarm optimization algorithm (PSO). An agent in MAPSO represents a particle to PSO and a candidate solution to the optimization problem. All agents live in a lattice-like environment, with each agent fixed on a lattice-point. In order to quickly obtain optimal solution, each agent competes and cooperates with its neighbors, and it can also learn by using its knowledge. Making use of these agent-agent interactions and evolution mechanism of PSO, MAPSO realizes the purpose of optimizing the value of objective function. MAPSO applied for optimal reactive power dispatch is evaluated on an IEEE 30-bus power system and a practical 118-bus power system. Simulation results show that the proposed approach converges to better solutions much faster than the earlier reported approaches. The optimization strategy is general and can be used to solve other power system optimization problems as well.T

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Multi-Objective optimal reactive power dispatch using pareto optimality particle swarm optimization method

For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control variables (e.g. generator voltages, tap positions of tap changing transformers and the number of...

متن کامل

New hybrid particle swarm optimization algorithm for solving optimal reactive power dispatch problem

This paper presents a hybrid particle swarm algorithm for solving the multiobjective reactive power dispatch problem. Modal analysis of the system is used for static voltage stability assessment. Loss minimization and maximization of voltage stability margin are taken as the objectives. Generator terminal voltages, reactive power generation of the capacitor banks and tap changing transformer se...

متن کامل

Particle Swarm Optimization Based Reactive Power Optimization

Reactive power plays an important role in supporting the real power transfer by maintaining voltage stability and system reliability. It is a critical element for a transmission operator to ensure the reliability of an electric system while minimizing the cost associated with it. The traditional objectives of reactive power dispatch are focused on the technical side of reactive support such as ...

متن کامل

Particle Swarm Optimization with Smart Inertia Factor for Combined Heat and Power Economic Dispatch

In this paper particle swarm optimization with smart inertia factor (PSO-SIF) algorithm is proposed to solve combined heat and power economic dispatch (CHPED) problem. The CHPED problem is one of the most important problems in power systems and is a challenging non-convex and non-linear optimization problem. The aim of solving CHPED problem is to determine optimal heat and power of generating u...

متن کامل

Optimal Placement of Static VAR Compensator to decrease Loadability Margin by a Novel Modified Particle Swarm Optimization Algorithm

In this paper, the Static Var Compensator (SVC) has been used to improve dynamic behaviour of power system. To do this, a new objective function is formulated considering power loss reduction, voltage profile improvement and loadability margin decrease. Other contribution of this research is proposing a novel structure for Particle Swarm Optimization (PSO) algorithm through modifying the initia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005